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Abstract 
Different expressions of the maximum-entropy esti- 
mates of the electron density function, corresponding 
to different prior information are obtained. They show 
that no general-purpose configurational entropy of 
density maps exists. Some universal properties of the 
modellings are discussed. In particular, the meaning 
of super-resolution is clarified. The information of 
lower and upper bounds of the electron density is 
not in general strong enough to produce atomic maps. 
Atomicity is then introduced as non-local constraints 
and applied to the problem of phase extension using 
experimental data and low-resolution model phases. 
In all cases, the knowledge of phases up to 3.5-3 A 
and observed moduli up to 1.5-1 ,~ allows an estimate 
of the electron density of roughly the same quality 
as the 1 A, map obtained from a Fourier summation 
to be produced. 

Introduction 

The foundations of the theory here developed were 
given in a previous paper: the criterion of maximal 
entropy was used to obtain an estimate of the electron 
density function on the basis of partial information. 
First a maximum-entropy probability distribution of 
maps was obtained, its functional form being a strict 
consequence of the type of constraints used. Next the 
electron density function was estimated using this 
maximum-entropy probability distribution (Navaza, 
1985). 

For the particular type of constraint considered the 
formulation corresponds exactly to a maximum- 
entropy algorithm using new forms of the configur- 
ational entropy of maps and gives rise to a modelling 
of the maximum-entropy estimate of the sought map. 

In this paper a slightly different presentation is 
offered aiming to show that no underlying probability 
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distribution of maps is in fact needed in order to 
apply the recipes of information theory, even if we 
can always think in terms of frequencies in an ideal- 
ized experimental situation. However, the probabilis- 
tic interpretation offers a conceptually simpler frame 
in which the problem of object reconstruction can be 
discussed. 

Different developments of maximum entropy have 
been proposed and the references can be found in 
the previous paper. More recent developments are 
those of Bricogne (1984), Livesey & Skilling (1985) 
and Semenovskaya, Khachaturyan & Khachaturyan 
(1985). It is not the aim of this paper to discuss the 
different formulations. 

Different modellings corresponding to different 
prior information are obtained and applied to experi- 
mental data. The results clearly showed that in the 
ab initio problem most maximum-entropy algorithms 
give uninterpretable maps. Moreover it was also 
found that the model phases (the 'true' phases) are 
not even placed in a concave region in the space of 
phases. 

Theproblem of phase extension is also considered. 
Good results are obtained when information on 
atomicity is introduced in the form of non-local con- 
straints. From the experimentally observed moduli 
corresponding to 1 A resolution and the model phases 
up to 3.5-3 A, all the atoms were recovered for struc- 
tures with different numbers of atoms in the unit cell. 

Finally, a critical discussion of super-resolution is 
presented. It is shown that, in general, little or no 
extra resolution of peaks is to be expected when most 
of the maximum-entropy algorithms are used. 

Information and feasible maps 

Crystallographers are faced with the problem of 
reconstructing a certain function p, taking values at 
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the different points r of the unit cell/2, starting from 
a limited number of its Fourier coefficients F°b. 

p will be a dimensionless function representing for 
example the probability of the presence of electrons 
in the crystal (measured in arbitrary units) or the 
inverse Fourier transform of the scattering length for 
neutrons (also in arbitrary units) when scattered by 
the nuclei in the crystal. 

Any diffraction experiment gives the moduli of a 
subset Le of the whole set of Fourier coefficients of p: 

F°b(L)=I/V ~ p(r)exp(2~iLr)d3r, L ~ ,  (1) 
O 

V being the volume of the unit cell/2. In favourable 
cases the experiments can give information about the 
phases of some of the observed Fourier coefficients 
(e.g. isomorphous replacement methods). 

The bare experimental information is then 

F°b(H), H ~ 

[F°b(K)I, K ~ 

periodicity of p 

symmetry group of p (the symmetry group of p 
is the group of symmetry operations which 
leave p invariant). 

With this information the crystallographer usually 
performs an inverse Fourier transform 

~r(r) = X F°b(H) exp (-2zriHr), (2) 
H E ~ '  

which can be considered as an estimate of p, and tries 
to interpret it. This interpretation is done using infor- 
mation that comes from other fields, such as physics 
and chemistry. 

This prior or non-experimental information typi- 
cally consists of 

bounds of p: PMin < P (r) < PMax, for r i n /2  
atomicity of p 

stereochemistry. 

In the X-ray diffraction problem the prior lower 
bound is zero and the upper bound is given by quan- 
tum-mechanical atomic calculations, so that p is a 
positive function. In the case of neutron diffraction 
p can be positive as well as negative. 

Atomicity means that p should present itself as the 
sum of almost non-overlapping peaks (after correc- 
tions for temperature effects), and stereochemistry 
imposes definite prescriptions for the distances and 
angles between these atomic peaks. 

This prior informaton is by far the strongest one 
for the problem of reconstruction under consider- 
ation. For example, in the case of macromolecules, 
experimental data seldom extend much beyond 2.5/~ 
resolution. This means that the estimation cannot 
resolve features separated by less than about 2/~, so 

that atoms cannot be resolved. It is only the non- 
experimental information that allows the crystal- 
lographer to build a model that makes physical sense. 
The estimation z of p serves as a guide in the con- 
struction of such a model. 

It is natural to look for a better estimation of p 
using experimental as well as non-experimental infor- 
mation. The degree of difficulty for some given infor- 
mation to be taken into account depends on the 
information itself and to a certain extent on the for- 
malism employed. In this sense bounds of p will be 
'easy' information whereas stereochemistry will be 
'difficult' for us (except at the final stages of the 
reconstruction procedure). 

Our procedure will consist in selecting some infor- 
mation, assuming that this is all that is available. Any 
map, say m, consistent with this information will be 
called a feasible map. There will be a lot of feasible 
maps so that we will not be able to consider or display 
all of them, but we will have no argument to prefer 
one more than any other. 

We will then have to study the relevant features of 
the set ~: of all feasible maps in order to see whether 
the selected information can efficiently help us in the 
reconstruction of p. This will be done by using statis- 
tical procedures of analysis of data, computing 
average values of different functionals of the feasible 
maps. The averages will be computed by assigning 
the same weight to all feasible maps as, in keeping 
with the above assumption, it is the only unbiased 
assignment we can make. Average values with small 
associated mean-square fluctuations will be taken as 
good 'representatives' of ~:. 

Maximum-entropy estimates 

The procedure just outlined can be formulated on 
the basis of information theory: the different averages 
will be calculated by assigning a probability value to 
each feasible map. Among all the admissible proba- 
bility distributions we will choose the one that is the 
least committal with respect to missing information. 
To each probability law P(m) we assign, in a unique 
way, a value that measures the lack of information 
associated with the law (Shannon & Weaver, 1949; 
Jaynes, 1968). This value is the entropy of P(m) given 
by 

H ( P ) = - I / I z  ~P(m)ln[P(m)]~m, (3) 

/x being a parameter proportional to the number of 
degrees of freedom of the map, to be fixed at the end 
of the calculations. Here ~m is the element of measure 
in the space of maps, and P(m) is the probability per 
unit measure. Our choice consists in selecting the 
probability law that makes H take its maximum value. 

Expectation values computed with this law will be 
considered as estimates. These maximum-entropy 
estimates will be good 'representatives' of the whole 
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set ;~ of feasible maps if the mean-square fluctuations 
computed with the maximum-entropy probability law 
are small. In particular, the expectation value of the 
feasible maps will be the maximum-entropy estimate 
of p. Whether or not these estimates agree with the 
extra information explicitly considered as not available, 
they still represent the best estimates we could have 
made on the basis of the selected information. This 
form of statistical inference is called the maximum- 
entropy principle, MEP (Jaynes, 1957). 

In the case under study this criterion of maximal 
entropy simply tells us that the maximum-entropy 
probability law is a uniform law. Conceptually the 
MEP is thus equivalent to the procedure previously 
outlined. Nevertheless it drastically simplifies the 
analysis if, as in most applications, information can 
be phrased in terms of average values. 

We have so far assumed that the available informa- 
tion was strictly satisfied by each of the feasible maps. 
This led us to a uniform maximum-entropy probabil- 
ity distribution of maps. In view of the mathematical 
treatment we will also consider maps that will be 
consistent with only a subset of all the available 
information, the rest of it being satisfied 'on the 
average'. They will be called admissible maps and 
denoted by m as before. Their probability distribution 
determined by invoking the MEP will no longer be 
uniform. 

Strict fitting of the information by each map corre- 
sponds, in statistical physics, to a microcanonical 
description of the set ~. It is well known that this 
description is not the most convenient one on mathe- 
matical grounds. Satisfaction of the information 'on 
the average' corresponds to a canonical description 
of the set M of admissible maps (obviously we have 
~ <  ~/). A number of pertinent results obtained in 
statistical physics (see, for example, Kubo, Ichimura, 
Usui & Hashitsume, 1978) concerning the equiva- 
lence between the different possible descriptions of 
'statistical ensembles' can be extended to the problem 
here discussed. 

In the microcanonical description one can also 
work with the set ~4 but, in such a case, the probability 
law will be zero for maps not belonging to ~:. 

Selection of the information 

No prior information 

The simplest realistic case is that in which only the 
experimental information is considered as available. 
Infinitely many feasible maps can be constructed just 
by adding to ~" (2) any number of extra terms corre- 
sponding to non-observed reflections and assigning 
arbitrary phase factors to the observed moduli for 
reflections in YL If we call 

F ( L ) = I / V  ~ m(r)exp(27riLr)d3r, (4) 

the Fourier coefficient of m corresponding to the 
reciprocal vector L, a map belonging to ~ will be of 
the form 

m ( r ) =  r(r)+ Y~ IF°b(K)lexp(i¢'K-2zriKr) 
Ke5~ 

+ Y, F(L')exp(-27riL'r), (5) 
L'~.~' 

and the maximum-entropy probability distribution of 
maps PME(m), 

PME(m) = 1 /W (a constant), m ~ ~. (6) 

The maximum-entropy estimate of p is 

(m(r))ME = ~ PME(m)m(r)~r,, 

= z ( r ) +  Y~ IF°b(g)lexp(i~oK--2zriKr). 
KeSg" 

(7) 

This estimate depends on arbitrary phases ~0K associ- 
ated with reflections in ~. This arbitrariness is a 
consequence of the fact that (m)M E given by (7) is a 
first-order approximation to the estimate of p. Higher- 
order corrections would lead us to definite predic- 
tions, as will be discussed later in one of the examples 
in the following section. 

When the phases are experimentally accessible, we 
see that the maximum-entropy estimate of p coincides 
with z. This widely used reconstruction procedure is 
very efficient when a reasonable number of Fourier 
coefficients are available. 

Use of prior information 

We can now try to incorporate some non-experi- 
mental information. The simplest case is when the 
bounds of p are used. In this case a feasible map will 
be defined by 

I PMin < m (r) < PMax 
m has the correct periodicity 

m ~ ff  if ~ and group symmetry (8) 

|F(H)-F°b(H)=O,  H e W  
LIF(K)I-IF°b(K)I =0, K ~ ~. 

The ME estimate of p is now difficult to compute 
because analytical expressions for the feasible maps 
are not easily obtained. 

The analysis is simplified if we adopt the alternative 
procedure of fitting some of the information 'on the 
average'. To this end we consider the set M of admis- 
sible maps defined by 

(PMin<m(r)<PMax 
m e M if~m has the observed periodicity (9) 

I. and group symmetry, 

but now the Fourier coefficients of m do not 
necessarily fit the observed ones. We take the latter 
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information to be satisfied 'on the average': 

Cu=(F(H))ME-F°b(H)=O, n ~  
(10) 

Cr. =I(F(K))mEI-IF°b(K)I=O, K ~2~. 
Since Fourier transform and statistical average 

commute, (10) is equivalent to 

1 / v  f. (m(r))uE exp (2~rinr) d3r - e°b(H) = 0, 

H ~  
(11) 

I1/V ~ (m(r))ME exp (27riKr) d3rl- IF°b(K)l =0, 
D 

KCX.  

Information phrased in terms of average values will 
also be called constraints. We see that the particular 
constraints we have considered are of the very general 
type 

Ca((m)ME)=O, a = 1, . . . ,  A, (12) 

i.e. they are functionals of the mean value of the maps. 
This estimate is in turn a functional of the ME proba- 
bility distribution of maps, so that the constraints are 
in fact functionals of PINE, 

Ca((m)ME)=Da(PME)=O, a = l , . . . , a .  (13) 

According to the MEP, PUE will be determined by 
maximization of H taking into account the constraints 
D~. This will be done by using the technique of 
Lagrange, which consists in maximizing 

A 

H(P)-  E A~Da(P), (14) 
a = l  

with respect to P, for fixed values of the ,L's. This 
gives 

PME(m) = 1/Z exp [ - / z / V  ~ x(r)m(r)d3r], (15) 
/2 

where x is defined as the functional derivative 

A 

x ( r ) =  Y, A~SCa((m)mE)/8(m(r))uE, (16) 
a----1 

and Z takes account of the normalization of PINE: 

Pvm(m)~m = 1. (17) 

The Aa's are then determined so as to satisfy the 
constraints. 

The mathematical treatment follows now a classical 
route. From the normalization condition we compute 
Z, the partition function, whose logarithm (divided 
by/x),  

• (x )=  1//z In (Z) 

=l/tzln{~exp[-tz/V~nx(r)m(r)d3r]~m }, 

(18) 

will allow us to obtain all the relevant estimates. In 
particular, 

(m(r))ME=-8~(x)/Sx(r). (19) 

The mean-square fluctuation of the map is given by 

([Am(r)]2)ME = ([ m ( r ) -  (m (r))ME]2)ME 

= 82~(x)/8x(r) 2, (20) 

and the entropy corresponding to PUE by 

H(PuE) = -1 / /z( ln  (PmE))UE 

=~(x)+I /V  ~ x(r)(m(r))uEd3r. (21) 
n 

The results so far obtained are independent of the 
particular forms the measure of integration ~m and 
the set of admissible maps M can take. 

However, in most applications, and for practical 
reasons, the measure is assumed to be uniform, or at 
least factorizable (the precise meaning of this will be 
discussed in the next section), and the set of admis- 
sible maps is defined by giving the lower and upper 
bounds for the maps at the different points in/2 (one 
important exception is however the last example in 
the next section). In such a case (15) implies that the 
values of m at different points in /2  are statistically 
independent, so that ~ (x )  is the integral over /2  of 
a function of x: 

• (x) = 1 /V ~ ~o[x(r)] d3r. (22) 
/2 

This fact allows us to write (19) and (20) as ordinary 
derivatives with respect to x: 

(m)mE = -d~o/dx (23) 
and 

((Am)2)UE=((m--(m)uE)E)mE=d2~o/dx2>--O. (24) 

These last two equations imply that there is a local 
one-to-one relationship between (re)ME and x. As a 
consequence the entropy of P U E  will be given by an 
integral over /2  of a function of (re)ME, 

H(PME) = 1/V ~ [~o(x)-x d~0/dx] d3r 
D 

= 1 /V ~ tr(x) d 3r 
12 

= 1/V ~ h((m(r))uE)d3r 
12 

= SmE((m)~aE). (25) 

We will call this last expression the configurational 
entropy of the map (m)mE. It is worth noticing that 
the configurational entropy density h is also a local 
function of the estimated map (m). 

The particular relationship between (m)uE and x 
can be considered as a 'modelling' of (m)uE (Collins, 
1982). This modelling is intimately related to the 
configurational entropy. In fact it can easily be shown 
that the functional derivative of SUE with respect to 
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(re)ME is the inverse of (19): 

8SME((m)ME)/8(m(r))ME=X(r) (26) 

or, taking into account (25), 

dh((m)ME)/d(m)ME = X. (27) 

The results (15)-(27) are of a very general charac- 
ter. They are valid whenever the constraints are 
expressed as functionals of the mean value of the 
maps. Another very important result is that the 
Fourier coefficients of the maps have a vanish- 
ingly small mean-square fluctuation (Navaza, 1985). 
They are thus good representatives of the set ~ of 
feasible maps (or of the admissible set M). 

We are now in a position to demonstrate a connec- 
tion between our procedure to obtain the maximum- 
entropy estimate of p and the maximum-entropy 
method, MEM (see, for example, Livesey & Skilling, 
1985). The MEM as used in crystallography amounts 
to obtaining a function fM by maximization of a given 
functional of it under a certain number of constraints. 
If the functional is SME(f) given by (25) and the 
constraints C,,(f) = O, a = 1 , . . . ,  A as in (12), fM is 
determined by maximization of 

A 

1 / V  I h[f(r)] d3r - E haCa(f). (28) 
1"2 a = l  

It is easy to check that the solution fM of this 
problem coincides with (m)ME given by (19) [or (23)]. 

Examples of modelling of (m)M E 

The modelling is entirely determined by the assumed 
information. Different information corresponds, in 
the above theory, to different sets of admissible maps, 
or different measures of integration, or different types 
of constraints, or any combination of them. 

Different measures of integration 

The measure we are here considering is that that 
simply tells us how the integrals have to be performed. 

Sometimes the prior information can be satisfied 
by properly defining the measure 9, ,  of integration. 
In the absence of any prior information the natural 
measure is the uniform one, 

~m = II dm(r),  (29) 
r~/-2 

t e. we give the same 'weight' to different admissible 
maps. 

Since we expect to recover atoms, an admissible 
map displaying atomicity should have a greater 
'weight' than a flat one. As long as the measure of 
integration can be factorized in r the functional 
integrals can be easily calculated. For example, if we 
assume Gaussian atoms and make the weight propor- 
tional to the fraction of the volume of the unit cell 

at which p takes a given value, then 

p = exp (-ar2),  

weight oc4zrr 2= - 4 ~ / a  In (p), 

so that 

(30) 

~,~= 1-[ ln[1 /m(r )]dm(r) .  (31) 
r~.Q 

In this case the logarithm of the partition function 
is expressed in terms of the exponential-integral func- 
tion. We see that the information of atomicity (in this 
very simplified version) amounts to giving a stronger 
weight to small values of the maps. 

Different sets of admissible maps 

Different modellings can be obtained by changing 
the set of admissible functions over which the func- 
tional integral defining (/) is carded out, as shown in 
the following examples. The measure (29) will be 
used and additive constants entering in the definition 
of qb(x) will be ignored. 

We will generalize the information (9) to the case 
in which PMin and PMax are both functions of r. 

Putting 

D(r)  = 21-[ P M a x ( r )  --  P M i n ( r )  ] ,  
(32) 

M(r)=½[PM~x(r)+ pgi.(r)],  

the logarithm of the partition function is 

• (x) = 1 /V ~ (In {sinh [x(r)D(r)] /x(r)D(r)}  
D 

- x (r )M(r) )  d at, (33) 

and the modelling is 

(m(r))ME = M(r)+  D(r){1/x(r)D(r)  

- 1/tanh [x(r)D(r)]}. (34) 

This modelling can be used when dealing with 
neutron diffraction data, in which case PMin can be 
negative, and also to introduce the information con- 
ceming the solvent region in a macromolecular struc- 
ture, or the ordered portion in a disordered structure. 

Particular cases of the above general formulae are 
the following: 

(a) PMin(r)=0, PMax(r) = 1 

The modelling is 

(m(r))ME=½+½{1/[x(r)/2] -1 / tanh  [x(r)/2]}. (35) 

This function, as well as the corresponding configur- 
ational entropy density h, is shown in Fig. 1. 

This modelling corresponds to the simplest realistic 
case in the crystallographic reconstruction of p 
(Navaza, 1985). 

(b) PMin(r)- ' - - l ,  PMax(r) = 1 



Now the modelling is 

(m(r))ME = 1Ix(r)-- 1/tanh [x(r)].  (36) 

It can be used when only realness of the admissible 
maps is assumed. In such cases the bounds are kept 
fixed and the constraints scaled according to the 
assumed actual bounds. If  these are very large, say 
PMax >> 1, (m)ME will be small, of order 1/PMax. Then 
(36) tells us that x will also be small, 

(m)ME = --X/3, (37) 

and the configurational entropy, to the same order of 
approximation, 

SME=-~V ~ (m(r))2Ed3r. (38) 
12 

When the constraints are given by (10) the ME 
estimate of p is given by (7). We can now understand 
the origin of the arbitrary phases entering in (7). In 
fact, the configurational entropy is precisely 

SME------~ E If°b(Z)l =, (39) 
L E . ~  

because of Parseval's theorem. This expression does 
not depend on the phases of the Fourier coefficients. 
The arbitrariness in question disappears when terms 
of higher order in 1/PMax are included. 

(re)ME 
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Fig. 1. (a) Maximum-entropy estimate (m)M~ as a function of x 
(equation 35). (b) Configurational entropy density h as a func- 
tion of (re)ME for modelling (35). 

Different types of constraints 
The preceding examples assumed constraints of the 

general type (12), i.e. functionals of the mean value 
of the maps. It may happen that such a type of 
constraint is not appropriate to deal with some par- 
ticular information. For example, if we want to use 
the information of atomicity in the very approximate 
form 

m( r)2- m( r) = O, for r in O, (40) 

the constraints 

(m(r))2E-(m(r))ME=O, for r i n  I2, (41) 

are too rigid, the solution being (m(r))ME = 0 or 1. 
This solution does not make full physical sense 
because the information is not exact. Instead, if we 
try to satisfy (40) 'on the average', 

(m(r)2--m(r))ME=O, for r in/2, (42) 

(41) will no longer be satisfied. Constraints like these 
are of the general type 

Qb((mE)ME, (m)ME)=0, b =  1 , . . . ,  B. (43) 

A remarkable result is that, even if the assumed 
information is quite different, a modelling similar to 
(35) is obtained. Here we will simply outline the steps 
leading to this result. The information assumed is: 

information (9) with Prain = - o o  and PMax = o0 

,[constraints of type (12) as before 

I .constraints  (42). 
/ 

Since now we have an infinite number of constraints 
(42) we have to introduce a density of Lagrangian 
multipliers w and maximize 

A 

H ( P ) -  ~, A=Da(P)-I/V ~ w(r)(m(r)2-m(r))d3r. 
a = 1  12 

(44) 

with respect to P. This gives 

PME(m) = 1/Z exp ( - / z / V  ~ {w(r)m(r) 2 
1-2 

+ [ x ( r ) -  w(r)]m(r)} d3r), (45) 

with x defined by (16) as before. The logarithm of Z 
(divided by /z )  is now a functional of w and x, 

• (w, x ) =  1/V J {[1-x(r)/w(r)]2w(r)/4 

-½ In [w(r)]} d3r, (46) 

from which estimates can be computed by functional 
derivation. In particular, 

- 8 4 / 8 w ( r )  = (m(r)  2 - m(r))ME 

= [½w(r)2][2w(r) + x(r)  2 -- w(r) 2] = 0, 

(47) 
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because of (42). This defines w as a function of x: 

w(r )=  1 +[1 + x(r)2] '/2 (48) 

[the negative root of (47) is ruled out because of 
convergence conditions for the functional integral 
defining ~].  This last equation and 

-3~/3x(r)=(m(r))ME=½[1-x(r)/w(r)] (49) 

give the modelling 

(m(r))ME=½(1-x(r)/{1 +[1 +x(r)2]'/2}). (50) 

It is interesting to notice that the mean value of the 
maps is always positive and bounded by 1, even if 
such information was not employed at all. 

Configurational entropy generating relationships 

The maximum-entropy probability distribution of 
maps PME (15), together with the definition of the 
admissible set and its associated measure of integra- 
tion, uniquely determines the logarithm of the parti- 
tion function which, in turn, defines the modelling, 
the mean-square fluctuation and the configurational 
entropy. According to formulae (23)-(25) there are 
definite relationships between these last three quan- 
tities. 

Instead of starting from PME one can, on physical 
or mathematical grounds, make assumptions about 
the above relationships and the estimated map. This 
will, in general, allow us to determine tp(x) using 
(23)-(25) which we will write as 

d(m)/dx= - ( ( a m )  2) (51) 

and 

do'/dx = -x((Am)2). (52) 

Two cases will be discussed here: 
(a) Assuming the mean-square fluctuation to be 

proportional to the symmetric function of the esti- 
mated map 

((Am)2) oc (m)(1 - (m) )  ->0, (53) 

we obtain, using (51), 

(m) = [1 +exp (x)]-k (54) 

This modelling corresponds to the Fermi-Dirac 
configurational entropy density 

h((m))=-(m) In ( ( m ) ) - ( 1 - ( m ) ) I n  (1- (m)) .  (55) 

In this case it is possible to find a law PME leading 
to (54) (Navaza, 1985). It corresponds to a formula- 
tion in which atomicity is explicitly introduced and 
provides a link between the algebraic theory of 
inequalities and statistical estimation. In fact the 
mean-square fluctuation of any estimated Fourier 
coefficient is given by the integral of (53), which goes 

to zero when a sufficient number of E's are given as 
information. 

(b) Assuming the configurational entropy density 
to be proportional to the mean-square fluctuation of 
the maps 

tr(x) oc ((zam)2), (56) 

we obtain, using (52) and assuming 0-< (m)---1, 

(m)=  (217") -1/2 ~ exp ( - t2 /2)  dt = erfc (x). 
x 

(57) 

This modelling is shown in Fig. 2. We did not succeed 
in finding a physically sound law PME from which 
(57) could be obtained. 

Despite the many different modellings we have 
obtained, corresponding to different sets of informa- 
tion, there are some universal properties that make 
them very similar. In fact, x is defined up to a scale 
constant and, if the integral of (m) over 12 is given 
as constraint, up to an additive constant too. 
Moreover, all modellings are monotonically decreas- 
ing functions of x because of (24). The only essential 
feature that distinguishes one from the other is the 
presence or absence of built-in upper bounds. 

For bounded modellings, the choice of the arbitrary 
additive and scale constants in x can be used to match 
the inflexion points and slopes of the different 
modellings. These uniform modellings differ now in 
asymptotic behaviour and height at the inflexion 
point. In this sense the only essential difference 
between (35) and (57) is that they approach the 
bounds as 1/Ixl and exp ( - x  2) respectively. 

The universal character of the modelling will allow 
us critically to discuss super-resolution reported in 
the literature. 

Other considerations 

As already pointed out, (15)-(21) are independent 
of the particular forms of the measure of integration 
and of the admissible set. We will here study a par- 
ticular case in which this fact is clearly shown. 

(re)ME 
1.oo-i 

0-50-! 

O-OO; . . . . . .  
-6.0 -4.8 -3.6 -2.4 -1-2 -0.0 

. . . . . . . . . . . . . . . . . . . . . . . . . .  .°..o 

, ' ' ' " , "  ......... ~ .......... ; x 
1.2 2.4 3.6 4-8 

Fig. 2. ( m ) M  E = erfc (x) (equation 57). 
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Let us consider a crystal consisting of A equal units 
(atoms or fragments of molecules), the unit being 
completely characterized by the density function d (r) 
(the origin of r being at the center of gravity of the 
unit). The Fourier coefficients of d will be denoted 
by E(L), L~ SC. 

One admissible map is now defined as the super- 
position of A functions obtained from d(r) by 
arbitrary translations 

A 

m ( r ) =  E d(r-R~).  (5.8) 
a = l  

Each map is then characterized by the A parameters 
R~. The Fourier transform of (58) gives 

A 

F ( L ) =  E(L) X exp (2wiLRa). (59) 
a = l  

The maximum-entropy probability distribution of 
maps (15) is now given by 

A 

PME(m)= I /Z  I-[ exp [ - / z / V  I x(r) d ( r - R , )  dar] 
a = l  12 

A 

= I /Z  l-I exp[ -y (Ra) ]  (60) 
a = l  

with 
y (R)=tx /V  j x(r)d(r-R)d3r.  (61) 

12 

The average map can be obtained directly from 
this equation. Using the normalization condition (17), 
assuming that the different translated units can over- 
lap and that all translations are equally suitable (i.e. 
uniformly distributed in the unit cell), one obtains 

(F(L))ME=E(L)A/V 
x ~ exp (2~iLR) exp [y(R)] daR. (62) 

12 

It can easily be seen that, when the units are the 
atoms themselves and the extra available information 
consists of (10), this formulation corresponds exactly 
to a maximum-entropy algorithm using the configur- 
ational entropy - (m)  In ((m)/e). 

For arbitrary units d(r) the formulation corre- 
sponds to a generalization of the translation function 
used in crystallography. A generalization of the rota- 
tion function can be done along the same lines. 

Some numerical results 

The information used in the examples considered 
here consisted of (9) and (10). In particular, 

Ct.r=(F(H))ME-F°b(H)=O, H ~ ,  (63) 

are complex. Even if we can always work with real 
and imaginary parts (as was assumed in the preceding 
analysis), it is simpler to keep the complex form and 
use both CH and C-H to obtain a real expression, 
because of Friedel's law. We will assume in the fol- 
lowing that H and - H  are in ~g, and K and - K  in 

~, and the same for the associated Larangian multi- 
pliers. 

The function x is in this case 

x(r)= Y. AHSCH/8(m(r))ME 
H ~  

+ X V K 6 C K / 8 ( m ( r ) ) M E  
K~Y~ 

= ~, AL exp (-2wiLr), (64) 
L¢.LP 

the VK'S being real numbers and 

f an, H ~ 
AL=[vKOXp(i~OK) , K~YC, (65) 

where q~r is the phase of (F(K))ME. 
The numerical methods used to determine the AL'S 

in order to satisfy the constraints were explained in 
the previous paper. The method was first applied to 
the structure of prostaglandin (De Titta, Langs, 
Edmonds & Duax, 1980). Three cases were con- 
sidered (0 denotes the empty set): 

(a) X"~O, X = O  

Most of the atomic positions were recovered when 
the phases corresponding to the 25 independent 
greatest E ' s  were used. The Hessian matrix of the 
configurational entropy considered as a function of 
the phases had high negative diagonal terms but 
roughly half of its eigenvalues with the wrong sign. 
This means that the true phases are, individually, near 
the top of a very sharp maximum whereas, as a whole, 
they are not even placed in a concave region. Two 
configurational entropies were used in this calcula- 
tion: a Fermi-Dirac entropy, which is the appropriate 
one when working with E's  instead of F's,  and 
- (m)  In ((m)/e). 

( b ) Ab initio, ~ ' = 0 ,  Yf#0 

An uninterpretable estimation of p was obtained 
corresponding to a local maximum of the configur- 
ational entropy (Alzari & Navaza, 1983). Up to a 
maximum of forty E's  were used in the calculations. 

When a certain number of phases were assumed 
as known, corresponding to 3 A resolution (37 
independent phases), and the moduli to 1 A resolu- 
tion (about 1000 reflections), the structure could be 
recovered by inspection although the estimated map 
was not an atomic one. All the modellings of the 
preceding section, compatible with the assumed 
information, were used in the tests. The results were 
qualitatively the same, irrespective of the particular 
modelling chosen. 

Cases (b) and (c) were tried with other structures 
having a greater number of atoms. As a general rule, 
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when all moduli and phases were used to a resolution 
of 1.5-1 A, the estimated maps displayed atomicity 
and super-resolution. In case (c) recognition of the 
structure became more difficult as the number of 
atoms was increased. 

Atomicity in terms of non-local constraints 

A common feature of all the modellings discussed in 
the preceding sections is the local character of the 
relationship between (m) and x. By local we mean 
that the value of (m) at a given point r in O is 
determined by the value of x at the same point. 

The origin of this property is the type of constraint 
assumed [(12), but also (42)] and the domain of 
admissible maps. It is very difficult to change them, 
keeping the mathematics at a tractable level. 

Non-locality can also be introduced in the form of 
constraints of type (12). In this case the modelling is 
not changed but x is now a function of (m). This was 
already the case of formula (64) where x was a 
complicated non-local functional of (m)through the 
phases CK. The results of the preceding section clearly 
show that this form of non-locality is not sufficient 
to obtain either atomic maps or reliable phases. 

Better results are obtained when Sayre's equations 
are used as constraints of type (12) (Navaza, Castel- 
lano & Tsoucaris, 1983). They are formulated as 

(m(r))ME-- 1/V ~ g ( r -  r')(m(r))2E d 3r=0,  r in O, 

(66) 
or their Fourier transform 

Ds=(F(S))ME-O(S)Fsq(s)=o,  s E ~ ,  (67) 

6e being the set of all the reciprocal vectors. 0 is the 
Fourier transform of g and 

F s q ( s ) = I / V  ~ (m(r))2Eexp(2~riSr)d3r. (68) 
l"t 

The important feature in (66) is that it compares 
the value of (m) at point r with those of (m) 2 at all 
points in a neighbourhood of r, whose extent is deter- 
mined by the function g (typically 1/~). The effect 
of these non-local constraints is then to model (m) 
according to g. Since (66) is independent of the 
experimental data any power of (m) may be used. 
However, the original choice of Sayre is that that 
leads to the least number of calculations. 

We introduce one complex Lagrangian multiplier 
~s for each constraint Ds and compute x (16). Calling 
Xo the function (64) that takes account of information 
(10), we have 

x(r)=xo(r)+ ~, tZs3Ds/~(m(r))ME 
S ~ .9' 

= ~ AL exp (-2¢riLr) + ~, /Zs exp (-27riSr) 
L~.~ ce S ~  

--2(m)ME ~ O(S)txsexp(-21riSr). (69) 
S e 9  ~ 

This formula is valid even if 6e is a finite subset 
of reciprocal vectors. In particular, we can 
choose 6e = ~,  

with 
x(r) = a( r )  +/3(r)( m(r))ME, 

a(r) = E (AL+/XL) exp (-2~iLr) 
L~.Le 

(70) 

= Y aL exp (-27riLr) (71) 
L c . ~  

and 

fl(r)= ~ O(L)l~Lexp(-2"a'iLr) 
Le.LP 

= ~ bL exp (-27tiLt) (72) 
Lc.L¢ 

[0(L) is different from zero in any finite set ~f]. 
The modelling together with (70) gives parametri- 

cally, with x as parameter, (m)M E as a local function 
of a and ft. 

For given a and /3 (70) is a linear function of x 
and (m)M E. The intersections of this line with the 
modelling give all the possible values of (m)ME. It is 
easy to check that for bounded modellings there is 
always at least one and a maximum of three intersec- 
tions. 

We will not discuss here the possible procedures 
of determination of the a's and b's in order to satisfy 
the constraints. Instead we will give the arguments 
we used to simplify (70). 

As already stated in the preceding section, when 
moduli and phases are used to 1 /~ resolution the 
estimated map displays atomicity and super-resolu- 
tion. This means that atomicity is qualitatively com- 
patible with an x function having a spectrum limited 
to 1 ,~ resolution. We have then used x as given by 
(64) with all the complex A's considered as free 
parameters and minimized the function 

~., ICHI 2-}- E C 2-~ E IDLI 2 (73) 
H ~  K~Yf L~.~ 

with respect to them. The modelling used was 
(m)M E = erfc (x). Four structures were used as tests: 

prostaglandin, C 2 o H 3 2 0 3 5 ,  Z = 1,  P1; 
loganin, C17H2601o, Z =4,  P212121 (Jones, Shel- 

drick, Glusenkamp & Tietze, 1980); 
alamethacin, C28H4207N4, Z = 2 ,  P21 (Smith, 

undated); 
ergocalciferol, C28H~O7, Z = 8 ,  P212~21 (Hull, 

Leban, Main, White & Woolfson, 1976). 
For all the structures the (re)ME showed all the 

atoms at almost their right positions when the model 
phases to 3 A resolution and the observed moduli to 
1 A resolution were used (see Figs. 3-6). 

Some preliminary results on insulin seem to confirm 
that these results will also hold in the case of 
macromolecules (de Rango & Navaza, 1984). A full 
account of the tests performed on insulin will be given 
elsewhere. 
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In the case of prostaglandin the same procedure 
was used but with model phases to 3.5/~ and 
the same good results were obtained (Fig. 3). 

(a) 

t 

(b) 

(c) 
Fig. 3. (a) Projection of the electron density function of prosta- 

glandin (1/~ resolution Fourier series). (b) Projection of the 
electron density function of prostaglandin (3.5 A resolution 
Fourier series). (c) (m)M E based on the observed structure factor 
amplitudes to 1 A resolution and model phases to 3.5/~ reso- 
lution (23 independent phases). 

The nature of maximum-entropy estimations 

We will discuss the case most often found in the 
literature of constraints (10). The ME probability of 
maps (15), when expressed in terms of the Fourier 
coefficients of the admissible maps, gives 

PME(m)=I/Zexp[--tz ~ A*F(L)]. (74) 
L~e 

We see that the law only depends on the Fourier 
coefficients associated with the available experi- 
mental information. It is then maximally non- 
committal with respect to missing information. 

Since the Z's are determined so as to satisfy (10), 
the ME estimate of p is 

(m(r))ME = ~ F ° b ( H )  exp  (-27riHr) 

+ X IF°b(K)l 
Ke~" 

x exp  (/(~K)ME) exp (-2"n'iKr) 
+ E (F(L'))MEexp(-27riL'r): (75) 

L ' ~ - o ~  
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(b) 
Fig. 4. (a) Section of the electron density function of loganin (1/~ 

resolution Fourier series). (b) Same section of (m)ME based on 
the observed structure factor amplitudes to 1 A resolution and 
model phases to 3 A resolution. 
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what is not given as information is averaged using 
the law PME- The extra terms L'~ ~ are to take into 
account the prior information [(9), (32) or (42)] and 
give rise to super-resolution. It is precisely this prior 
information that determines the modelling, so that 
super-resolution is modelling dependent. 

Notwithstanding, owing to some universal proper- 
ties of modelling discussed in a preceding section, it 
is possible to understand qualitatively the amount 
and the sense of the super-resolution one can expect 
in a given reconstruction problem, irrespective of the 
particular local modelling chosen. 

We recall the two fundamental properties: 
(a) x(r) has the resolution of the experimentally 

available Fourier coefficients of p; 
(b) the modelling is a monotonically decreasing 

function of x. 
These two properties imply that (m)ME has 

much the same spatial resolution as the experimental 
Fourier coefficients, in the sense that it is difficult to 
resolve features that a Fourier series of this same 
experimental resolution does not resolve. 

Some modellings can give very sharp peaks, which 
in turn give high-resolution Fourier coefficients, but 
they will not, usually, give peaks at distances closer 
than the minimal compatible with the experimental 
resolution. 

The point we are here discussing is the follow- 
ing: what features can a trigonometric summation 
(Fourier series) with coefficients up to a given resolu- 
tion show? To answer this question let us start with 
the one-dimensional case 

N N 

y(x)= ~ c, exp (-2~rinx)= ~ c,z", (76) 
n = - N  n - - - - -N  

(a) (b) 
Fig. 5. (a) Section of the electron density function of alamethacin 

(1 • resolution Fourier series). (b) Same section of (m)M E based 
on the observed structure factor amplitudes to 1 .~ resolution 
and model phases to 3 .~ resolution. 

with z = exp (-2zr/x) in the unit circle of the complex 
plane. The derivative of y(x), 

N 

dy(x)/dx=-21ri ~ nc, z "-I, (77) 
n = - N  

has at most 2 N  zeros in the unit circle, hence 2 N  
zeros for 0 ~ x-< 1. This implies that y(x) presents at 
most N peaks so that any local MEM procedure 
using the information of Fourier coefficients up to 
the index N will never show more than N peaks. In 
principle, nothing prevents some of them being 
infinitely close, but crystallographic experience tells 
us that the closest distance that can be resolved is of 
the order of the resolution of the Fourier coefficients. 
This has full statistical sense because the interatomic 
distances between neighbouring atoms is always of 
the same order of magnitude so that there is no reason 
that two neighbouring peaks be shown instead of any 
others. Similar conclusions, although not so categori- 

I 

/ 

(a) 

(b) 

Fig. 6. (a) Section of the electron density function of ergocalciferol 
(1 ik resolution Fourier series). (b) Same section of(m)M E based 
on the observed structure factor amplitudes to 1 ik resolution 
and model phases to 3 • resolution. 
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cal, can be drawn in the three-dimensional case 
[using, for example, the formalism developed by 
Navaza & Silva (1979)]. 

These conclusions do not mean that (re)ME is 
equivalent to the traditional inverse Fourier recon- 
struction ~" (when phases are available), because ~- is 
not x, even if they have the same number of terms 
corresponding to the same reciprocal vectors. It just 
clarifies the sense of super-resolution and puts limits 
to the confidence we can give to phases and Fourier 
coefficients estimated by any local MEM procedure 
that only uses experimental data as constraints. 
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Abstract 

The basic Aw, a20 technique for examining single- 
crystal Bragg reflections [Mathieson (1982). Acta 
COest. A38, 378-387] has recently been improved 
[Mathieson & Stevenson (1984). Aust. J. Phys. 37; 
657-665], by using a simple experimental mod- 
ification which reduces the source component to a 
minor (angular) role, thereby making the extraction 
(deconvolution) of the remaining components more 
accurate. The application of this new technique in 
the determination of reflectivity (rocking) curves for 
imperfect crystals has been demonstrated [Mathieson 
& Stevenson (1985). Acta Cryst. A41, 290-296]. In 
the present case, the examination of individual reflec- 
tions from a small single crystal of CuInSe2 reveals 
that the improved technique is capable (i) of identify- 
ing, by its locus extension in ato, A20 space, diffrac- 
tion from one side of the specimen crystal to the other 
(in the diffraction plane), even for a crystal of average 
dimension -0 .06ram,  and (ii) of estimating the 
reflectivity curve for different parts of the crystal. A 
series of model eases is discussed, to clarify the inter- 
pretation of observed two-dimensional intensity dis- 
tributions. While considered here in relation to a small 

0108 -7673 / 86/040223 -08 $01.50 

crystal, this technique is applicable to extended-plate 
crystals (in transmission mode) by a selected-area 
procedure. 

1. Introduction 

In a recent series of papers, Mathieson (1982) be ing  
the first, Mathieson has demonstrated the advantages 
of the two-dimensional ato, A20 method for examin- 
ing single-crystal Bragg reflections, relative to the 
conventional Ato profile method. The one- 
dimensional intensity profile obtained in the conven- 
tional procedure represents the convolution of a num- 
ber of components such as the mosaic spread,/x, the 
source size, o-, the wavelength distribution, A, the 
specimen crystal size (Mathieson, 1984a), c, and, 
most importantly, the wide aperture in front of the 
detector, A. The aw, a20 technique, involving the 
introduction of a narrow aperture in front of the 
detector and the consequent extension to a second 
measurement parameter, results, in effect, in a form 
of partial deconvolution, with the individual major 
components being readily identified by their charac- 
teristic loci in Ato, a20 space. 

1986 InternatiOnal Union of Crystallography 


